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A means is developed whereby coordinate sets for related molecules may be compared in such a way as 
to express rigorously the relationship between them in terms of position, orientation, homogeneous 
strain and curvature. It is thought that such curvatures may be of value in characterizing hinge regions 
of allosteric enzymes. The method is illustrated with examples taken from haemoglobin and myoglobin. 

1. Introduction 

It is a common circumstance in protein crystallography 
to find two or more forms of a single molecule or 
oligomeric cluster for which differences of shape are 
evident. In this paper we are essentially concerned 
with the comparison of such shapes. 

Given two fully determined structures, a detailed and 
accurate statement of all the conformational angles in 
both structures would contain all the information 
concerning shape differences. In this paper, however, 
we take a different approach to the comparison for 
two reasons. Firstly, it would be valuable to have a 
general means of comparing conformations which 
could be used before detailed information concerning 
the conformational angles is available, and secondly, 
such angular measures, when available, are subject to 
errors and need to be considered collectively rather 
than individually in order to appreciate their cumu- 
lative effect. For example, the E helix of myoglobin 
is bent some 7 ° near its tenth residue (Watson, 1969), 
yet the fluctuations in ~0 and ~u angles from one residue 
to the next in this helix are not noticeably different 
from those in other helices, being dominated mainly 
by the positioning of the carbonyl oxygen atoms. Our 
aim is therefore to provide a means of comparison at 
a higher level and in a general way. 

Rao & Rossmann (1973) have used superposition 
techniques very effectively to search for structural sim- 
ilarities between proteins. Cox (Muirhead, Cox, Maz- 
zarella & Perutz, 1967) has used superposition tech- 
niques to characterize a rotational relationship be- 
tween the subunits of haemoglobin and Huber, Epp, 
Steigemann & Formanek (1971) have used similar 
techniques to compare two related molecules. In all 
these cases, however, the only transformations con- 
sidered were linear orthogonal transformations, and in 
the first instance, although a non-orthogonal transfor- 
mation was discovered, the information expressed by 
the non-orthogonality was suppressed. 

Linear transformations are limited in that they pro- 
vide only for a constant orientation of the body 
throughout the transformed region and cannot there- 
fore describe a region in which bending or twisting 
occurs. Quadratic transformations provide the possi- 

bility of searching for regions in which one molecule 
is curved in comparison with another, thereby iden- 
tifying hinge regions associated with conformational 
differences. The quadratic parts of such transforma- 
tions introduce an additional 18 degrees of freedom 
into the transformations which give rise to conceptual 
difficulties. However, nine of these may be simply sum- 
marized in graphical form in terms of three principal 
curvatures (although this number reduces to eight at 
any point where the strain is isotropic) and the remain- 
ing nine (or ten) do not contribute to changes of orien- 
tation. 

In the present work transformations with either 12 
or 30 degrees of freedom are considered depending on 
whether linear or quadratic transformations are being 
used. In either case, the linear part is factorized into 
the product of two transformations, one of which rep- 
resents pure strain and the other a pure rotation. 
The pure rotation is then uniquely and rigorously de- 
fined as that which rotates the principal axes of strain 
in one body onto the principal axes of strain in the 
other, these being, generally, the only three orthogonal 
directions which remain orthogonal locally under strain. 
For example, if a square is sheared to a rhombus and 
rotated, measuring the rotation by reference to its 
edges will give differing results depending on which 
edge is used, but if the rotation is measured with ref- 
erence to its diagonals a uniquely meaningful result is 
obtained. The rotation remains uniquely defined even 
if the principal axes of strain are not. 

In what follows we suppose that two sets of coor- 
dinates exist with a one-to-one correspondence be- 
tween them. These coordinate sets need not be com- 
plete; they might, for example consist of C~ coordi- 
nates only. One of the two sets will be regarded as a 
reference set and the other as an object set. For ex- 
ample, in dealing with the myoglobin E helix, its own 
coordinates might form the object set, and coordinates 
for an ideally regular ~ helix might be used as a ref- 
erence set. The analysis then leads to a characterization 
of the deformations and rotations which must be per- 
formed on the reference set in order to make it coincide 
with the object set. Thus, in the above example we 
say what must be done to a straight helix to make it 
look like the myoglobin E helix, rather than saying 

A C 3 2 A  - 1 



2 ON THE C O M P A R I S O N  OF C O N F O R M A T I O N S  

what must be done to the E helix to straighten it, but 
one is, of course, free to make the opposite choice. 

Attention is thus focused on the reference set and 
operations upon it. Transformations are expressed in 
relation to the coordinate system of the reference set 
and it is considered that the orientation of the reference 
molecule is a standard one, that of the object set being 
arbitrary. If we then wish to compare the superim- 
posed coordinate sets, we may either compare the 
transformed reference set with the object set, or we 
may compare the back-transformed object set with the 
reference set. In order to assist the user to work with 
a single orientation as standard the latter alternative 
is chosen. However, this choice requires the evaluation 
of the inverse of a quadratic transformation which, in 
principle, is not itself a quadratic transformation. A 
quadratic approximation to the inverse is given in the 
Appendix. The program which implements these pro- 
cedures makes available for display the back-trans- 
formed object set and the reference set, and also gives 
the r.m.s, fitting error for this comparison and for the 
comparison of the transformed reference set with the 
object set, the latter normally being the closer fit. 

The problem falls naturally into two parts. The first 
part is concerned with the deformation of a continuum, 
which involves differentiation, and the second part is 
concerned with the relationship between this and a 
deformable assembly of discrete points, in which dif- 
ferentiation has to be replaced by finite difference 
techniques designed to simulate differentiation. We 
begin by considering the continuum problem and re- 
turn to the question of discrete point sets later. 

Where no ambiguity arises the mathematics will be 
written, for clarity, in matrix notation. However, this 
is not suitable for dealing with the third-rank tensors 
that occur in the quadratic transformations and it has 
therefore been necessary to use the more complicated 
subscript notation. Usually a subscript occurs only 
once or twice in any term of a tensor expression, sum- 
mation over that subscript being implied if it occurs 
twice. In this work, however, there are places where a 
particular subscript occurs three times, and places 
where one may occur twice without summation being 
involved. For this reason capital letter subscripts ,,viii 
be used when summation is not intended, and lower- 
case subscripts will be used when it is. Furthermore, 
quantities which relate to the reference axes will be 
unprimed whi le  those which have been transformed 
onto the principal axes of strain will be primed with 
one prime for each subscript on which transformation 
has been performed. There are several instances in 
which a third-rank tensor is transformed on the first 
two subscripts only, and this needs to be distinguished 
from transformation on all three. 

2. The continuum problem 

We let X denote the position vector of a point in the 
object set, having components Xx on a cubic Cartesian 

set of axes. x and x, are the corresponding quantities 
for the corresponding point in the reference set, also 
on cubic Cartesian axes. Since there is no need in what 
follows for the object and reference sets to be in the 
same orientation, X and x may be considered to be 
referred to the same set of axes. Then at any point in 
the reference set we may obtain a matrix of derivatives 
for which the element on the ith row and j th  column 
is 

D , j =  -~xj (1) 

and it may readily be verified that D satisfies the trans- 
formation law for second-rank tensors, namely 

D'£M = aL~a M j D  i j , (2) 

if the axes of reference are rotated so that a/.x is the 
cosine of the angle between the Lth axis of the primed 
set and the I th axis of the unprimed set, and using the 
summation convention stated above. 

D is not symmetrical, having nine independent ele- 
ments. Evidently it transforms a vector fix in the ref- 
erence set according to 

3XI  = D1jf ixj  . (3) 

In elementary elasticity theory it is usual to take a 
matrix similar to D (involving derivatives of displace- 
m e n t  with respect to position) and to resolve it into 
the s u m  of a symmetric and an antisymmetric part and 
to interpret the symmetric part as strain and the anti- 
symmetric part in terms of a rotation (Nye, 1957). 
Such a treatment is only valid for small strains and 
small rotations. In this work we suppose that D may 
be factorized according to* 

D = R T ,  (4) 

in which R is an orthogonal matrix expressing a pure 
rotation having three independent elements, and T is 
symmetric having six independent elements, thus pro- 
viding for nine degrees of freedom in D. Equation (4) 
states that the transformation (3) is to be considered 
as the application of a pure strain followed by the 
application of a pure rotation. [It would, of course, be 
possible to write the factors in (4) as T R  and to develop 
the subsequent theory on that alternative and different 
basis. However, the basis given here is preferred be- 
cause it provides for the application of strain direct to 
the unrotated reference set, which the other does not.] 
Since T leaves the directions of the principal axes of 
strain unchanged, R expresses the orientational rela- 
tionship exactly in relation to them. 

From (4) 

D D =  T R R T =  T T  (5) 

(using a tilde to denote a transpose), but since 

~ = T  

* Here and elsewhere, when subscripts are omitted matrix 
notation is intended. 
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by definition 
T = ( D D )  1/2 (6) 

and the factorization is completed by writing 

R = D(L) D) -1/z . (7) 

Formation of/~R or R/~ confirms that R is orthogonal 
provided D is of rank 3. The conventional strain tensor, 
S, is then given by 

S = T - I .  (8) 

DD is real symmetric positive definite, and therefore 
T is also real symmetric. (DD) ~/z is a matrix having 
the same eigenvectors as /)D and with eigenvalues 
equal to the square roots of those o f / ) D .  Only the 
positive square roots need be considered. (Negative 
roots correspond to tensile strains of the order of - 2 ,  
i.e. an end-to-end reversal, which would consequen- 
tially be associated with an improper rotation R to 
reflect it back to its original chirality.) 

With this formulation R can express gross differ- 
ences of orientation between the object and reference 
sets and it is of the same form as matrices used by 
McLachlan (1972) for superimposing one molecule on 
another. Apart from this function, R itself is of little 
interest; it is variations of R from place to place which 
express curvature. Likewise a constant T, other than 
the identity, corresponds to a homogeneous strain of 
the entire object set, such as might arise from an error 
in a crystallographic cell constant. Hence variations of 
T from place to place are also of interest, and may be 
regarded as the causes of changes in orientation. 

We consider next the second derivatives of X 

D I S K _  ~2XI 
3xKOxj (9) 

which may also be shown to satisfy the transformation 
law for third-rank tensors. /5 has 18 independent ele- 
ments because 

DXSK=bIKS , (10) 

i.e. it is unchanged by transposition on the second and 
third subscripts. In writing a tensor such as /5  it will 
always be given with the subscript relating to the 
numerator in the first position and with subscripts 
relating to the first and subsequent differentiations in 
the second and subsequent positions. 

We now wish to find T and/~  in terms of D and /5  
so that the rates of change of strain and orientation 
may be determined. Note, first, that the derivative of 
the nth power of a matrix M is not equal to nM"-La;/ 
because M and M do not commute, so we shall dif- 
ferentiate T implicitly, from first principles. 

From (6) 
TxjTj~:= Dj,D~K . (11) 

Then if x is a small displacement 

(T,~+ x,~P,~,) (T j r+  XmTjKm) 
= (Oj~ + x t / s j n )  (OjK+XmD.iKm).  (12) 

Hence, to first order in x 

xIT,~,TjK+XmTt~TjKm=X,bj,tDjK+XmDj,DjKm (13) 

and since this holds for any small x 

J',jLTJK+ T, jJ"jKL=/5.nLDfK+D.nb.JKL. (14) 

Now let A be an orthogonal matrix with elements a u  
which diagonalizes/3D at a point, rows of A being the 
eigenvectors of / )D.  In what follows we use A without 
alteration in the vicinity of that point, notwithstanding 
the fact that neighbouring points may, in general, have 
differing strains not diagonalized by the same A. To 
treat A as a spatial variable which continuously diag- 
onalizes/3D would allow a study of the variation from 
place to place of the directions of the principal axes 
of strain, but this is not the same thing as variations 
from place to place of the orientation of the material, 
and to study this we find it more convenient to deter- 
mine A at a position of interest and to treat it as con- 
stant in the vicinity of that point. Thus A is a diagonal 
matrix such that 

z (15)  h l j  = an, a.nDmk Dmz 
2 2 (16)  Au = 2~ 

A,j  = T'is . (17) 

Transforming (14) then gives* 

2r)~', Tj~: + TjjT'./~L=ffjTLDj'K+Dj'~bj'~,.. (18) 

i.e. 

= bSkDj ,+DSbj , (20) 
2~ + 2K 

j.,,, R=a,R~,,X,~ = bj'~RDj'K+ Dj)bj)R 
2x + 2K 

(21) 

Teo R = a,pako T',~R . (22) 

Note that the evaluation of i""' or of T"  involves 
straightforward matrix multiplications to obtain the 
numerator, but that division by /~I + ~'K is not of this 
form, being an element by element operation. For this 
reason ~/' is not readily obtainable except by way of ~/"' 
or T'" .  Note also that 

~ L  = ii '~ L (23) 

and similarly for T" and ii'. This symmetry differs 
from that of D. 

* For  example, the t ransform of  the first te rm may be 
obtained as 

amaokaa, J]j, Tjk = amaokam~jm'Fljz Tin1, 

= aetaokaR,anjanm J'tJ, Trek = T'~nR T'n'O. 

i.e. Transformat ion  of  ~'IjLTjK leads to an expression of  the 
same form with the subscripts renamed and primes appended.  
The subscript name  changes may be reverted. 

A C 32A - I* 
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C/" expresses the rates of change with respect to the 
untransformed coordinates x of the nine elements of 
strain. 2/"" expresses the rates of change with respect 
to the transformed coordinates x' of the nine elements 
of strain expressed on the local principal axes of strain• 
At any particular point, of course, the off-diagonal 
elements of T" vanish identically. Nevertheless their 
spatial derivatives do not vanish because the trans- 
formation a u is not itself varied, as explained earlier. 

To differentiate R we write 

RuTsK = DxK ; (24) 

differentiating and transforming as before gives 

/~.~.)kTj~: + R~). ]'j~L = b',~L (25) 

b'mjrDmr, + gTk,& + 27 ~D;) [ ] (26) 2j + 2~ , 

from (17), (20) and the transform of (24). Hence 

• [ f)~jLD'~r+D'~Jb'm'rL] (27) f~'t~L= 2~ ID'rKL-- D'I; 
t 2~,2j(28+2~) J" 

To determine the rate of change of orientation of 
the object set relative to the reference set in the vicinity 
of a point, let R rotate the reference set onto the ob- 
ject set at that point and let R(x) rotate the reference 
set onto the object set at a point displaced from it by 
a small x in the reference set, then 

Rn~(x) = R,E + x,.R,rr, = R.PtK(x) (28) 
in which Pz~(x) is an orthogonal matrix representing 
an incremental rotation associated with the vector 
increment x. In this form P applies to the reference 
set of  coordinates before the rotation R is applied. 

Evidently 

RuR,K + xtRu1~,r., = RuRuPtK(x) (29) 

Psr(x) = 8j,: + x, RuR,K, (30) 

= 6.,K + X, QsKL (31) 

defining Q. Now 

Q's'~L= Ri's_R;~c (32) 

=_2~D;,s {2E1./);~.L_ D;; [ bm;zDm~+ Dm,,/)=iL 
2K2,,(2E + 2 , , ) 1 }  (33) 

from (17), (27) and the transform of (24). 
Now (15) gives 

D;'jDi'N= A~N (34) 
so that 

[ f)m'.lLDmK'-b D'~jb'~fKL ] 
Q'f;rL=XY~2~D;sb~'rL--2s 2~2j(2K + 2j) (35) 

2K(2 K .qL 2j)"} 

27 w;;b;'&- 2~ ~bm;,DmK 
2~ + 28 

bL, .D~ 
2~(2K + L) 

(36) 

(37) 

Note that 
Qy~r = - Q ~ j ,  (38) 

2~ + 28 (39) 

QeOL = asPako. Qj',a, (40) 

from which the rotation P(x) may be obtained with 
(31). 

The rotation P, being differential, may be expressed 
in terms of a curvature vector V, itself a function of 
x. For sufficiently small x 

Vn(x) = ½euueu(x) (41) 

=½emsxkQu. (42) 

in which the direction of V(x) is the axis of rotation 
of the change of orientation associated with a small 
displacement x and its magnitude is the rotation angle 
in radians for that displacement. If x is 1 A then V 
expresses curvature in radians A -I. V(x) parallel to x 
implies twisting and V(x) perpendicular to x implies 
bending. 

Now 

IV(x)12 = V~(x) V.(x) : ¼ehue~u,,xkx.QukQz.., (43) 

= ¼(6ufsm- 6..Ost)XkX.QukQzm, , 

= ¼xkx.(QukQu,,-  QukQs.,) 

=½XkXnQijkQiyn 
--½XkX,,MR,, . (44) 

defining M. 
Principal curvatures may thus be found from (42) 

by setting x equal to each of the eigenvectors of M 
since these give stationary values of lV(x)l/Ixl. 

A further result of interest may be obtained as fol- 
lows. Suppose that, in (42), we allow xk to be replaced 
by xw. which is an orthogonal matrix, k running over 
the elements of each vector and L varying from vector 
to vector, these vectors being mutually perpendicular; 
then the curvature vectors V themselves form a matrix 

Vuz(X) = ½enUXkLQuk (45) 

WuM = V m ( x ) x m  = ½emsxuxmQuk 

=½enuQuM (46) 

and the trace of W is 

y.~ ~ghh ~ 1 --~ehuQul,-- Vhl(X)Xm (47) 

and the significance of this quantity is that it is the 
sum over the three vectors x of the scalar products of 
these vectors with their associated curvatures V, and 
it is independent of the choice of vectors x except that 
they shall be mutually orthogonal unit vectors. Fur- 
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thermore, Y being a scalar, is unchanged on transfor- 
mation* so that 

2-2 ~D]'pb;'~;- 2 ;  xb;;'~D;£ 

(48) 

2~-'D;;bi£; (49) 
=ew" 2~ + 21, 

which may be simplified to 

1 
D ~pD i~2~ Y =  ~ ~ ; 1  " "'" ~ (50) 

in which 

K-(X~ +~2) (22+23) (~3+21). (51) 

Y vanishes if the eigenvalues are equal (isotropic 
strain) because, for a given p, ).,~-2~ is involved as a 
factor since /)j~R=/)j~Q. For small strains Y remains 
small. As an illustration of the meaning of this, con- 
sider a cylinder twisted about its length. For x along 
its length V is parallel to x; for two other directions 
normal to each other and to the axis of the cylinder, 
V must be anti-parallel to these radii and of half the 
magnitude of the axial twist in order that Y should 
vanish. Consideration of a twisted cylinder shows that 
this is so. 

As an illustration of some of the foregoing ideas 
consider a thick plank, initially a rectangular parallele- 
piped, having x~ along its length, x2 in the direction 
of its thickness and xa in the direction of its width and 
let it be bent to an arc of a circle of radius p-~ meas- 
ured to the arc of unchanged length, the straight plank 
being reference and the curved one the object. Then, 
writing 

and 

gives 

s = sin px~,  c = cos p x l ,  a = 1 - p x z  (52) 

Xl=(p-~-x2)s 
X2---p- ~(1 - c) +x2c 

X3 = x3 

D =  s c , 
0 

R =  ¢ 
0 

T=diag  (a, 1,1), A = / ,  

(53) 

(54) 

* ehljQtjh=tmj~,k~u~jmQktm=emjapnavkaqlaqzarflrmQkzm 

= ap~a~lar.leatjapka~larmQktm = ev~rQ'p'q;. 

D I J K  

m 

m 

Dulr, D l s =  

m 

m 

- aps - p c  
apc - p s  
0 0 

- p c  0 
- p s  0 

0 0 

0 0 
0 0 
0 0 

0 pa 
- p a  0 

0 0 

--pa 0 
0 0 
0 0 

0 0 
0 0 
0 0 

m 

0 
0 

0 
0 
0 

0 
0 
0 

0- 
0 
0 

0 
0 
0 

0 
0 
0 

K = I  

K = 2  

K = 3  

K = I  

K = 2  

K = 3  
(55) 

~'112 = --p, all other elements zero. And for the K =  1 
layer 

_R = c - p s  , Q = 0 
0 o 

V =  (56) 

/~, Q and V being null for K = 2  or 3. Note that the 
curvature V expresses the fact that the orientation of 
the plank alters by p radians about X3 per unit dis- 
placement in the direction of xl (because K =  1) and 
that it does not express the fact that the concave side 
of the plank is bent to a greater curvature than the 
convex side because it expresses change of orientation 
per unit displacement in the reference body, and the 
curvature is the same everywhere on this basis. 

3. On the relationship between curvature 
and the spatial derivatives of  strain 

The distinction between Tand 2r'" is one which depends 
only on the change of axes to which these tensors are 
referred and this change is itself a function only of D 

• n i" ~'"'  and not of D. It follows that we may co s oer i as 
having the same number of degrees of freedom as does 

for the purpose of relating 2r and Q, and we shall 
base the following discussion on the primed quantities. 

~/"" has 18 distinct elements and Q"'  has nine, yet all 
27 are functions of the 18 independent elements of b 
so that the elements of Q'"  and of T '"  cannot be inde- 
pendent of each other. If, therefore, we try to summa- 
rize the quadratic character of the transformation in 
terms of the principal curvatures (which derive direct- 
ly from Q'"  alone) we must ask what types of quadratic 
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features remain unexpressed by such a summary. Both 
V(x) and x of the principal curvatures are functions 
of Q so that the principal curvatures would appear to 
possess nine degrees of freedom. However, if the 
eigenvalues, 2, of T are approximated by unity, Y 
vanishes by (50), and (48) becomes a linking equation 
among elements of Q and its freedoms are thereby 
reduced from nine to eight. It follows that there must 
(within this approximation) be ten degrees of freedom 
available to 7' which describe curvature-free quadratic 
deformations which may be present to any degree in 
a deformed body and which will not be detected by 
calculation of the principal curvatures. 

Equations (10), (20) and (37) may be rearranged to 
give 

(2, + 2j) (i"Z,'~-/S;,,) 

= ~,(~ + 2K)O~'rs + 2 j (2 , -  2~:)Q~s, (57) 

and if the eigenvalues are approximated to unity this 
becomes 

T'iJ~ - T's~,= Qi'rs , (58) 

which makes up in clarity what it lacks in precision. 
This shows that if some increment is added to 7"u'K 
and the same increment is added to those elements of 
2V'" related to it by cyclic permutation of the subscripts 
then Q'" is unchanged by this operation, and converse- 
ly, the principal curvatures cannot reveal strain fields 
contributing equally to cyclicly related elements of T'" .  
There are, in all, ten such fields, three of the form T~'x, 
six of the form [T~s with T~s~ and Ts~'~](J~ I) and one 
of the form [2V~s K with 2Vs~ ~ and l'~Js] ( I ~ J ~  K S  I). 
[If the distinction between the eigenvalues 2 is retained, 
equation (57) leads to conclusions which differ only 
in detail.] An example of the first kind is provided by 
a heavy elastic rope suspended from one end and 
stretched by its own weight. The tensile strain varies 
linearly with height (2V~'~ ~ 0) but there is no curvature. 

These three types of curvature-free strain fields are 
typified by the transformations 

Xl = xl + ½px~ ] 
X 2 ~  X 2 

X3= x3 (59) 

Xl=xl - -px lx2  } 
X2 ~-- -½px~ + X 2 (60) 
x~'r3 --- X3 

and 

)(1 = xl +px2x3 ] 
)(2 = x2 +px3xl 
)(3 = x3 +pxlx2 

(61) 

and these are illustrated in Fig. l(a), (b) and (c) re- 
spectively. For all these three transformations the de- 
formation is curvature-free in the sense that the prin- 
cipal axes of strain everywhere in the deformed object 
bear a constant orientational relationship (in these 

(a) 

(b) 

(c) 
Fig. 1. The three types of curvature-free quadratic deforma- 

tions, (a), (b) and (c) corresponding to equations (59), (60) 
and (61) respectively. All of these are curvature-free in the 
sense that the principal axes of strain in the deformed body 
are everywhere parallel to the corresponding lines in the 
reference body. (a), (b) and (c) are essentially one-, two- and 
three-dimensional in character. The ten curvature-free 
degrees of freedom are made up of three like (a), six like 
(b) and one like (c). (a) and (b) show the deformation of 
arrays of elementary squares, while (c) shows the deforma- 
tion (in orthographic projection) of eight contiguous 
elementary cubes. 
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cases parallel) to the corresponding lines in the refer- 
ence body. This does not mean that all straight lines 
in the reference body map into straight lines in the 
object body, nor does it mean that the orientation of 
the principal axes of strain does not vary from place 
to place. In (60) for example, the slopes of the principal 
axes of strain in the 1,2 plane are given by 

fXl fxl x2 [1 + 1/5 ~ 2 - - +4xi/x21 (62) 
f Xz Oxz 2xl 

and the left-hand equality is preserved everywhere, 
even though the function on the right varies from place 
to place. 

i ' " '  may always be resolved into the sum of two 
strain fields B ' "  and C" '  such that B ' "  is curvature- 
free and C ' "  is pure curvature, according to 

B'H'K = ½C/",jK + ~j'~, + ~ ; j )  (63) 

C';S'K = T'~K-- B'~SK (64) 

SO that, if the deformation is to be summarized by the 
principal curvatures, then the residual deformation 
which is not contained in the summary may be ob- 
tained from (63), the resulting numbers being the coef- 
ficients of the ten curvature-free quadratic strain fields 
already described. 

Since, in comparing protein conformations, changes 
of orientation associated with curvature are of primary 
interest the computer program which has been written 
for this purpose gives the principal curvatures as a 
summary. The ten coefficients of the curvature-free 
fields are usually small and are commonly ignored, 
but may be regained if required. 

4. Discrete coordinate sets 

In cases in which the object and reference sets consist 
of discrete points rather than a differentiable continu- 
um it is necessary to replace D and b by finite differ- 
ence approximations to the derivatives. To obtain D 
at a point it is only necessary to expand (3) to include 
three column vectors fXx and fXs for three correspond- 
ing atoms (expressed relative to that point and the 
transform of that point) in square matrices JX~L and 
JXjL SO that 

f X I L  = D I j f X j L  (65) 

D ~j = f X~kf X;s ~ , (66) 
i 

provided that the vectors fix are not coplanar. In prac- 
tice, however, it is preferable that D should depend 
on more than three corresponding atoms in such a 
way that D becomes the least-squares solution to the 
fitting of fiX to fx. If  this is done, (65) implies that 
whatever point is taken as origin in the reference set 
must transform exactly to the origin in the object set, 
so that, if one atom is chosen as a reference point, (the 
fix and JX values being then coordinates of other atoms 
relative to the chosen one) then the chosen atom is 

given infinite weight in the fitting. An alternative would 
seem to be to relate the atoms in both object and ref- 
erence sets to their corresponding centroids. This leads 
to the best possible conditioning of the least-squares 
determination of D (and of D), but the centroid of the 
reference set only maps onto the centroid of the object 
set in the absence of quadratic terms. It is therefore 
necessary to allow for a floating origin and to write 

= -'I-"~DljkXjLXkL (67) XIL de+DijxjL 1 " 

in which XtL and XjL ( L = I . . . N )  represent the 
coordinates of the N corresponding points in each set 
expressed relative to their own centroids. D and b then 
provide the leading terms in a Taylor expansion about 
the centroid and d allows the origin to float. 

d, D and b together have 30 independent elements, 
so that a minimum of ten atoms are required to deter- 
mine them. The results are less sensitive to error if more 
than ten atoms are used and (67) is interpreted in a 
least-squares sense by writing 

X = ( d l D l E ) ( i ) + e  (68) 

in which (diD [E) is a partitioned matrix having three 
rows and ten columns, one for d, three for D and six 
for E. E contains the 18 independent elements of b 
and ~0 contains the products XILXjL with the factor ½ 
when I =  J, and e contains residual errors. 

The least-squares solution is then 

1 (dlDlE)=X('[l~l~o) 1 (~l~7l~ (69) 

5. Implementation 

A program has been written which determines d, D 
and b from (69) and displays graphically the reference 
molecule in its own orientation with the object mol- 
ecule back-transformed to superimpose upon it. The 
program distinguishes three regions in all. The primary 
region consists of atoms selected from the reference 
molecule, together with corresponding atoms found in 
the object molecule by corresponding names or posi- 
tions in a list. The primary region is used to determine 
the transformation (67) by (69). The secondary region 
consists, optionally, of further atoms selected in the 
same way, which play no part in the determination of 
the transformation, but to which the transformation 
may be applied. This allows an extrapolation of the 
superposition into a neighbouring region to be ob- 
served. For example, if the relative movement in the 
cqP2 interface of haemoglobin is to be examined then 
choosing a primary region in el and a secondary 
region in flz shows up .the relative displacement when 
oxy- and deoxy-haemoglobin are compared. The third 
region consists of all the rest of the molecule. This 
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plays no part in the current calculation, except that it 
is held in core and is available for the selection of sub- 
sequent primary and secondary regions. 

The program provides the option of using either 
linear or quadratic transformations, so that rigid-body 
superpositions may be done if preferred. This is done 
by omitting partions containing E or (0 from (69). It 
should be noted, however, that the linear part of a 
quadratic transformation determined by least squares 
is not the same as a linear transformation determined 
by least squares with the quadratic terms constrained 
to zero. (This is analogous to the distinction between 
the best straight line fitted to a section of a parabola, 
and a tangent to it at x =  0.) 

The back-transformation required to transform the 
object molecule onto the reference molecule for display 
purposes may be written 

• , 1 " ,  XlL=dI + OljXjr. + 2DIjkXjLXkL (70) 

and it is shown in the Appendix that 

" * - -1  - -1  - -1  " DISK = -- Dip Dad DrK Dpqr (7 l)  

DI l = D~-di - 1 -- I - -  I " • + Dxp D~s D,s Dpq~d~ (72) 

• - - 1  1 - - 1  - - 1  - - 1  " d, = - D , j  d j -~D,1 , Da, D,, D~,~,d~d, (73) 

which may be substituted in (70). A simpler alternative 
is to write 

x,,=lgh'(Xj,-dj) 
- - I  - - i  - - I  " -{Dzz, D¢I D,.k Dp~,(Xjr.-d:)(Xkr.-dk) (74) 

but the choice between (70-73) and (74) may depend 
on whether or not one wishes to preserve the X values 
unmodified by subtraction of d. 

Three back-transformations may be requested for 
display. The first is 

XtL= RjI(XjL-- dj) . (75) 

In this case the axis of rotatiori is also shown as a line 
with a length scaled to represent the rotation angle. 
Similarly a rotation axis associated with the matrix 
product 

" R o l d  R n e w  

is shown in which Rnew is the orthogonal matrix as- 
sociated with the current primary region, and Rold is 
that associated with the immediately previous one. The 
axis and angle generated in this way therefore express 
the total bend of the object molecule relative to the 
reference molecule between the present and previous 
primary regions. 

The second back-transformation is 

x~L= D~j~(XjL- dj) . (76) 

If  this is requested, the principal strains are shown as 
arrows pointing towards or away from the centroid, 
marked in percentage of compression or extension re- 
spectively. 

The third back-transformation is given by (74) and 
in this case the principal curvatures obtained from (42) 
are shown as vectors attached to the extremes of the 
eigenvectors of M [equation (44)]. 

Fig. 2 shows an example of the first two types of 
plot. In this case the reference molecule is a regular 
helix of polyalanine, calculated by the method of Dia- 
mond (1966) with all residues having ~0 = - 57.37 °, ~, = 
-47 .52  °, co= 180 °, T= 109"66 °. The object molecule is 
the E helix of myoglobin. Reference atoms are plotted 
as concentric circles, with a single diameter drawn 

c.. 0 

f ~  

~G[ c 0 
r, 

~ 2  , 

o ~  

® -  

(a) (b) 

Fig. 2. The application of linear transformations to fit the 
myoglobin E helix to a regular helix, the fitting being ac- 
complished at the lower part of the figure in (a) and in the 
upper part in (b). About two thirds of the helix in each case 
is in the secondary region and is not fitted but shows the 
effect of extrapolating the fit into these regions. In stepping 
in this way from one end of the helix to the other, the 
program reports a change in orientation of some 12-4 °. For 
further details see text. 

'~ ~SI 
,EN  /~ 

,0E oA ~-,' ~ / 

(a) 

~7EN 
@0 

~(e 9E CB 

(b) 

Fig. 3. (a) and (b). Two orthogonal views of the application of 
the quadratic transformation to the most curved portion of 
the myoglobin E helix. Residue 8 is glycine. For details see 
text. 
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Fig. 4. (a), (b) and (c) Application of orthogonal, linear and 

quadratic transformations respectively to the comparison of 
horse oxy- with deoxy-haemoglobin. The substantial dis- 
crepancy vectors in the upper right and lower left of (a) are 
largely removed in (c), although some differences between 

through any which is in the secondary region only. 
The single circles mark the myoglobin E helix trans- 
formed back onto the reference helix both orthogonally 
and by the general linear transformation. No quadratic 
parts were calculated for this figure so that they re- 
present the 'best' linear transformations rather than 
the linear part of the best quadratic transformation. 
The primary region in Fig. 2(a) is in the lower part of 
the figure and contains 31 atoms from E l 3 0  to E20 
C. The arrow pointing to the upper right in Fig. 2(a) 
indicates that within the primary region the myoglobin 
helix is stretched 7.6% in this direction and the small 
arrow shows it to be compressed 1.6% in this second 
direction relative to the regular helix. The arrow point- 
ing to the lower left shows that the object and reference 
molecules are rotated 162 ° relative to one another 
about the line of this arrow. Within the primary region 
the orthogonal transformation provides superposition 
to 0.284 A r.m.s, and the linear one to 0.232 A. 
Throughout the primary and secondary regions to- 
gether the corresponding figures are 1.783 and 2.130 
A, indicating that the strains detected in the primary 
region are not characteristic of the helix as a whole. 
Each object atom is connected to its reference atom 
and these lines clearly show the bend of the helix. 

In Fig. 2(b) a similar calculation is shown (in the 
same orientation) in which the primary region consists 
of 27 atoms from E1 N to E6 C. Strains of +4 .6%,  
- 5 . 4 %  and - 6 . 3 %  are found, and again these are 
local rather than general, and may be influenced by the 
fact that E1 N and E1 C are within the primary region 
but are not truly part of the E helix. The uppermost arrow 
on the right of the figure shows that the overall dif- 
ference of orientation of the two ends of the myoglobin 
helix is 12.4 ° about this arrow as axis, which corres- 
ponds approximately to a 6 ° twist about the helix axis 
and a 10.8 ° bend. 

In Fig. 3(a) and (b) two orthogonal views are given 
of 25 atoms from E 4 0  to El0  C, all of them in the 
primary region. The reference body is again the reg- 
ular ~ helix and its atoms are marked with solid 
circles. The squares with vertical diagonals show the 
object body orthogonally back-transformed, the 
squares with vertical sides show the general linear 
back-transformation and the open circles are the qua- 
dratic back-transformation of (74). These are generally 
closer to the solid circles than are the squares. The 
light arrows show tensile strains of 7.1% and 1.6% 
and a compressive strain of 4%. The heavy arrows 
show the principal curvatures attached to the extrem- 
ities of the eigenvectors of M [equation (44)], the 
largest of these being some 3.6 ° A -1 about an axis 
which is about 72 ° to the helix axis, per A of displace- 
ment in a direction at 46 ° to the helix axis. The accu- 
mulated change in orientation between one end of the 
helix and the other of 12.4 ° [Fig. 2(b)] is about an axis 
which is within 45 ° of the axis of largest curvature 

the two structures are visible in the central region which are ,, found in this central region. The fact that the squares 
of a local nature. For further details see text ~ g e n e r a l l y  fall to the left of their circles in both upper 
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and lower parts of Fig. 3(a) is a visible indication of 
curvature. 

Fig. 4(a), (b) and (c) shows respectively the orthog- 
onal, linear and quadratic transformations applied to 
the superposition of main chain and Cfl atoms from 
residues 77 to 105 of horse oxy- and deoxy-haemoglo- 
bin c~ chains. The oxy form is treated as reference, and 
there is no secondary region. The discrepancy vectors 
are substantial in Fig. 4(a) and clearly may not be 
eliminated by a further rotation since improvements 
made in this way in part of the figure would be deleter- 
ious elsewhere• The linear transformation in Fig. 4(b) 
changes the directions of the discrepancy vectors, but 
does little to improve the fit, the r.m.s, discrepancy 
having fallen only from 1.03 to 0.97 A. These figures 
are very similar and both of them well outside the 
estimated accuracy of the coordinates. In Fig. 4(c) the 
discrepancies are clearly much reduced by the quadra- 
tic transformation, the r.m.s, discrepancy being now 
0.66 A. Clearly, several atoms still do not superimpose 
well, indicating conformational changes of a more 
local character, but the overall curvatures are as little 
as 1-26, 0.86 and 0"34 ° A -I  

I am indebted to Drs MacLachlan and Perutz for 
the haemoglobin coordinates, and to several of my 
colleagues for criticism of the manuscript. 

A P P E N D I X  

D e r i v a t i o n  o f  the  reverse  quadrat i c  t r a n s f o r m a t i o n  

Given the forward transformation 

X~=di  + Disxs+½biskxsxk , (A1) 

substitution of X into the reverse transformation 

x , = d ;  + D b X s +  x " * 2DIskXsX k (A2) 
gives 

x ,=dl  + DTsdj +½b7MA 
* 1 " *  +[D,sDsk + zDis,(Dskdt + D.,ds)]xk 

+½[D?sbsk, "* ± .  + hxsv(2hsk,dv +½Dvk,ds + hskDvt)]XkX, 

+ ¼ D ~ j v [ O  j m D v k !  + D s m I h  vk]XkXzXm 

1 " *  " " + -, D ,s vD smlD v,,k xk x l x,,,x,, . (A3) 

Comparing coefficients of powers of x, ignoring the 
cubic and quartic terms, gives, from the linear term 

DbDsK+½Db,(DsKd z + D~rds)=t~,r (A4) 

which, on multiplying by DF~, rearranging and re- 
naming subscripts gives 

D u =  DD1 1"* * --~Dm(Drtd s + Dstdr)D51 (A5) 

and from the quadratic term [substituting (A5)] 
0 =  " - 1  X "* -1  DSrL[D, s - 2Dm(D, td, + D,td,.)Dts ] 

" *  1 " 1 " + O,~,(½O~rrd~ +~Dsrt.6 + D, KD,L) 

= ])sKr O ~ 1 + / )  ~,,[½(3, rL - 3 SrL O f t  O ~ 1)6 

+½(Dsrt.-DsrLDstDGX)4 + DrrD~L] (A6) 

and the round brackets vanish, so that multiplying by 
Dk~ DTQ t gives 

Dn, o=  - DI)XD~DTolDsk, (A7) 

and substitution in (A5) gives 

Dx*s = Dis 1 + D~ID~slD~ 1Dvqrdz . (A8) 

Finally, the zero-order term gives 

0 = d ; + D ~ s d  s ± ' *  + 2Dmdsdt,, 
whence 

dT= -D3'ds-½DTCDglDfilb,,qAkdz . (A9) 

Equation (74) follows from (A7), (A8) and (A9) with 
d=0.  

If the left-hand side of (A3) is denoted yl, substitu- 
tion of the foregoing results gives 

Yr = x x -  Flqr(FastXr + FrstXq)XsXt 
- Flq~FqzmF~txlXmX~Xt, (A10) 

in which 
F~.s~¢ = ½DE, a D,sK (A 11) 

so that the absolute error in the back transformation 
involves the second and third powers of b and the 
third and fourth powers of x. 

References 

DIAMOND, R. (1966). Acta Cryst. 21, 253. 
HUBER, R., EPP, O., STEIGEMANN, W. & FORMANEK, H. 

(1971). Eur. J. Biochem. 19, 42-50. 
MCLACHLAN, A. D. (1972). Acta Cryst. A28, 656-657. 
MUIRHEAD, H., Cox, J. M., MAZZARELLA, L. & PERUTZ, M. 

F. (1967). J. MoL Biol. 28, 117-156. 
NYE, J. F. (1957). The Physical Properties of  Crystals. 

Oxford Univ. Press. 
RAO, S. T. & ROSSMANN, M. G. (1973). J. Mol. Biol. 76, 

241-256. 
WATSON, H. C. (1969). Progr. Stereochem. 4, 299. 


